IFC Workshop on Sustainable Hydropower & Regional Cooperation

"Moving from bilateral connections to system-to-system approaches – the experience of Lao PDR"

By Viraphonh Viravong
Vice Minister, Ministry of Energy & Mines, Lao PDR
19-20 January 2015, Nay Pyi Taw, Myanmar

- 1. How energy connections could evolve?
- 2. STS Model: Expected benefits and business risks
- 3. The experience of Lao PDR

How Energy Connections could evolve?-1

- Large Hydropower Potential in Myanmar, Lao PDR and Cambodia in ASEAN;
- Rich Natural Gas Resources in Brunei Darussalam, Indonesia, Malaysia, Thailand and Vietnam;
- Reasonable Oil Resources in Brunei Darussalam, Indonesia, Malaysia, Thailand and Vietnam;
- Large Coal Reserves in Indonesia and Vietnam;
- Enormous Geothermal Potential in the Philippines;
- All ASEAN have Plenty of Biomass;

How Energy Connections could evolve?-2

- Great deal of complementarities in the energy sector in ASEAN: Not only in the diversity of resource endowment but also in the seasonal characteristic of supply and demand of electric power;
- Good potential for developing energy markets;
- Expanding power grids proved to be both economically and environmentally desirable:
 - Billions of dollars saved through shared reserve margin & peak power;
 - Presently, 80% of all power generation is non-renewable, emitting greenhouse gases, acid rain, toxic wastes, etc. while enormous potential for hydro, tidal, solar, wind and geothermal sites exist around the region: 12,500 MW of hydropower from Lao PDR would help to avoid emitting 30-60 M tons of Carbon Dioxide into the atmosphere annually;
- Future demand can be met from wheeled electricity rather than constructing the next power plant;

How Energy Connections could evolve?-3

- Through bilateral and regional agreements, it would be possible to develop and utilize resources more efficiently:
 - Lao PDR, Thailand and Vietnam could develop and utilize a combination of thermal and hydropower more efficiently;
 - Malaysia and Indonesia can use their gas and coal reserves more efficiently while allowing Lao PDR, Cambodia and Myanmar to develop large and untapped hydro potential;
- The improved efficiencies are reflected in reduced customer costs, while expanding markets for each power producer --- a massive win-win situation;
- Increased energy interdependence improves the relationship between countries and decreases risk, again improving investment climates: Cooperation could bring more benefit than Competition in the energy sector.

Current Model Description in Laos

- Exports are primarily on a BOT basis, from large projects such as Nam Theun-2, with dedicated transmission; a percentage of the output is reserved for Lao domestic use;
- Sales are made via a long term PPAs at negotiated prices;
- The project assets will be returned to the Lao government at the end of the concession period;
- EDL is the single-buyer for all domestic consumers; it also provides transmission and distribution services;
- There are other exports and imports as well; for example, to meet local load requirements in some parts of the country.

Concerns with current model

- Only very large projects, with significant energy output, can support the required project investments; these projects maybe limited in number;
- The export IPP projects do not enhance the Lao grid;
- A lot of surplus power from many plants under contract (PPAs with EDL), but can only export this power on a system-to-system basis;
- Laos does not get benefits from more substantial inter-system relations;

STS Model: Expected benefits & risks-1

- Expected benefits:
 - Enhanced trade and exchanges with neighbors;
 - Lower system costs, greater reliability;
 - Ability to sell surplus from aggregate of small plants;
 - Enhanced opportunities to sell energy and capacity;
 - Development of the grid;
 - Impartial grid operations;

STS Model: Expected benefits & risks-2

Risks:

- The surplus power mix is not optimal for export;
- Export market is smaller than expected;
- Export prices are lower than expected;
 - Cover domestic PPA costs, but with low profits;
 - Do not cover domestic PPA costs;
- Lao demand (e.g., from industry) is much greater than expected; to meet export obligations would need to curtail domestic load;
- Lao demand is much lower than expected (e.g., expected industrial load does not materialize); power surplus is larger;
- Financial risks as cannot sell aggregated power on a back-to-back basis; credit worthiness issues; possible need for credit enhancement;
- The grid does not develop adequately;
- The grid is not operated in a reliable and impartial manner; effect on neighbors' willingness to contract, especially for firm power;

Outline of Regional Energy Landscape

Power Demand Forecast in GMS countries - Mw

Years	2012	2020	2030
Cambodia	762	1,715	5,144
Lao PDR	1,020	2,550	4,667
Myanmar	1,806	5,689	19,911
Thailand	26,121	47,018	63,474
Vietnam	19,713	39,426	78,852
Yunnan, PR China	22,765	39,840	59,759
 Total GMS 	72,187	136,237	231,806
Planned Mw in Laos	3,200	12,500	25,000
% of Export	68%	80%	75%
Available from Laos,	Gwh	55,000	100,000

Regional Cooperation and Interconnections

- Lao PDR in 2014:
 - 23 interconnections, including 5 x 500 Kv / 10,000 Mw T.L. capacity with Thailand;
 - 7 interconnections and 5,000 Mw MOU for power trade with Vietnam;
 - 4 interconnections and 2,000Mw MOU with China;
 - 2 interconnections and 2,000 Mw MOU with Cambodia;
- Lao PDR and Singapore are discussing 100 Mw of power trade through Thailand and Malaysia grids:
 - Technical viability;
 - Allowable existing capacities?
 - Time & Duration of cross border power trade?
 - System congestion, including security and reliability?
 - Planning and Operation mechanism for system operators?
 - Financial viability;
 - Tariff structure?
 - Wheeling charges?
 - Import duties, taxation, etc.?
 - Commercial and Legal Agreements;

Lao Hydropower: 1970-1990

Model: Traditional development by state-owned utility with government/international institutions assistance

- Example 1: Nam Ngum-1 HPP commissioned in 1971
 - Originally two 15 MW generators;
 - Two 40 MW generators were added in 1978;
 - A fifth 40 MW unit added in 1984;
 - 3x40 Mw are being added, COD by 2018;
- Example 2: The 45 Mw Xeset-1 commissioned in 1990, was originally planned to be a 2.6 Mw project to supply local demand only;
- Both projects were developed to resolve domestic power insufficiency, but interconnections with much larger Thai grid greatly reduced generation cost and provided more reliable supply to domestic grid;

Lao Hydropower: 1990-2014

- □ Participation of Private sector: IPP / BOT
 - Export on Project-by-Project basis with 10-15% supply to local grid;
- ☐Increased Bilateral Exchanges

Example of large project located in international river and by private sector: Xayaburi HPP

- Run-of-river scheme on the Mainstream of the Mekong, with small pondage: A Transparent Dam Design with respect to sediment transport;
- Most technologically advanced fish passage systems ever designed for tropical river;
- Installed capacity: 1,285 MW, 90% for export;
- US\$3.5 Billion; project financing largely by Thai banks; Design and engineering by CNR and Poyry, other international consultants;
- Construction began Dec 2012, commercial operation begins 2019; 30-year concession;
- Meeting all International standards of Hydropower Sustainability, including 1995 Mekong Agreement;

Example of small project in international river, and by private sector: Don Sahong HPP

- Run-of-river scheme on one of the many channels of the Mekong, using 15% of river flow;
- Developer using "natural" fishways, by improving existing channels;
- Installed capacity: 256 MW for domestic supply;
- US\$721 million, project financing by Malaysian banks with international experts;
- 4 years of construction could begin as early as Feburary; 25-year concession period;
- No potential significant trans-boundary impacts are anticipated; All international hydropower sustainability criteria were met;

Vision for Lao Hydropower: 2015-2020

- 2015-2020: Establishment of System-To-System transactions, examples:
 - 1. 3,000 Mw EDL-EGAT STS Agreement;
 - Export of 100 Mw from Laos to Singapore, through Thailand/ Malaysia grids or LTMS PIP, using existing transmission facilities.
 - 3. 3,000 Mw CSG-EGAT STS through Laos

Vision for Lao Hydropower: 2020-2030

- ☐ 2020-2030: Establishment of Regional Power Trade
- Example: Electricity Trading between Laos-Thailand-Malaysia-Singapore could save as much as US\$26 billion over 10 years for the 4 countries involved; study by ERIA;
- Cross-border power trade is technically feasible but needs a business model and legal agreements.